Deutscher Bundestag

20. Wahlperiode 23.02.2023

Antwort

der Bundesregierung

auf die Kleine Anfrage der Abgeordneten Dirk Brandes, Dr. Dirk Spaniel, Wolfgang Wiehle, weiterer Abgeordneter und der Fraktion der AfD – Drucksache 20/5463 –

Handlungsfelder zur Etablierung unbemannter Luftfahrtsysteme als neue Verkehrsträger

Vorbemerkung der Fragesteller

Durch die vielfältigen Anwendungsmöglichkeiten werden unbemannte Luftfahrtsysteme (UAS) zunehmend für die unterschiedlichsten gewerblichen Zwecke genutzt (https://www.zdf.de/nachrichten/panorama/zukunft-innenstae dte-warentransport-drohne-100.html) und ergänzen die landwirtschaftliche Bewirtschaftung (https://www.handelsblatt.com/technik/digitale-revolution/di gitale-revolution-der-automatisierte-acker-wie-roboter-und-drohnen-die-landwirtschaft-umkrempeln/26266548.html). Außerdem können UAS dringend benötigte Produkte in Gebiete liefern, die mit konventionellen Verkehrsmitteln nur schwer erreichbar sind. Mit dem gezielten Einsatz von UAS gewinnen solche Gebiete an Attraktivität. Das gilt nicht nur für abgelegene oder schwer zugängliche Gebiete, sondern für den ländlichen Raum in der Breite (https://bmdv.bund.de/SharedDocs/DE/Anlage/DG/aktionsplan-drohnen.pdf?__blob=p ublicationFile).

Mit ihrem Aktionsplan "Unbemannte Luftfahrtsysteme und innovative Luftfahrtkonzepte" will die Bundesregierung den neuen Verkehrsträgern den Weg in die Anwendung ebnen und Deutschland als wettbewerbsfähigen Innovationsstandort etablieren – unter der Prämisse, gleichzeitig die öffentliche Sicherheit und Ordnung als höchstes Gut zu wahren (ebd.).

Seit 2018 findet die Rechtsetzung für den Betrieb unbemannter Fluggeräte auf EU-Ebene statt. Grundlage ist die sogenannte EASA (Europäische Agentur für Flugsicherheit)-Grundverordnung. Mit den am 1. Juli 2019 in Kraft getretenen EU-Verordnungen (EU) 2019/945 und (EU) 2019/947 sind weitere rechtliche Vorgaben ergangen und grundsätzlich ab dem 1. Juli 2020 von den EU-Mitgliedstaaten anzuwenden.

"Aufgrund der europäischen Regelungskompetenz entfällt die Möglichkeit, den Rechtsrahmen für die unbemannten Luftfahrtsysteme national selbständig zu gestalten. Die Mitgliedstaaten verfügen aber weiterhin über die Möglichkeit, Regelungen zum Schutz vor dem mutwilligen Missbrauch von UAS oder zum Schutz der Privatsphäre und der Umwelt zu treffen" (ebd.).

In dieser Kleinen Anfrage möchten die Fragesteller von der Bundesregierung wissen, wie sie im Rahmen ihrer rechtlichen Regelungskompetenz den Akti-

onsplan "Unbemannte Luftfahrtsysteme und innovative Luftfahrtkonzepte" umsetzt und welche weiteren Handlungsfelder sich aus Sicht der Bundesregierung bei der Etablierung unbemannter Luftfahrtsysteme als neue Verkehrsträger ergeben.

- 1. Sieht die Bundesregierung im Rahmen ihrer Regelungskompetenz aktuell rechtliche, regulative und technische Schwierigkeiten, die den gewerblichen Einsatz von UAS insbesondere bei der Versorgung ländlicher und abgelegener Gebiete in Deutschland behindern, und wenn ja, wie sollen diese Schwierigkeiten nach Ansicht der Bundesregierung beseitigt werden?
- 2. Sieht die Bundesregierung im Rahmen ihrer Regelungskompetenz aktuell rechtliche, regulative und technische Probleme, die den agrarwirtschaftlichen Einsatz von UAS u. a. zur gezielten Anwendung von Pflanzenschutz- und Düngemitteln behindern, und wenn ja, welche Lösungsansätze sieht die Bundesregierung vor?
- 3. Existieren aus Sicht der Bundesregierung rechtliche, regulative und technische Schwierigkeiten im Rahmen nationaler Regelungskompetenz, die den medizinischen Einsatz von UAS u. a. zum Transport von Arzneimitteln behindern, und falls die Bundesregierung Handlungsbedarf erkennt, wie will sie die bestehenden Probleme beseitigen?

Die Fragen 1 bis 3 werden aufgrund ihres Sachzusammenhangs gemeinsam beantwortet.

Der Gesetzgeber und die Bundesregierung haben im Rahmen ihrer Regelungskompetenz bereits die Weichen gestellt, um den Betrieb von unbemannten Fluggeräten in der Landwirtschaft, im medizinischen Bereich und in abgelegenen Gebieten zu ermöglichen. Zu den wichtigsten umgesetzten Maßnahmen gehören die Drohnenverordnung von 2017, das Drohnengesetz von 2021 und das kürzlich veröffentlichte nationale Standardszenario DE.STS.FARM für den Betrieb von unbemannten Fluggeräten zu land- und forstwirtschaftlichen Zwecken.

4. Sind nach Ansicht der Bundesregierung die derzeitigen gesetzlichen Regelungen ausreichend, einen datenschutzrechtlich sicheren gewerblichen Einsatz von UAS zu gewährleisten?

Der europäische Rechtsrahmen und die Vorgaben der Luftverkehrs-Ordnung – insbesondere § 21h Absatz 3 Satz 1 Nummer 1, 3, 4, 7, 8, 10 – sind wirksame Mittel, um den Betrieb von unbemannten Fluggeräten datenschutzrechtlich sicher zu gestalten.

- 5. Ergreift die Bundesregierung im Rahmen ihrer eigenen Regelungskompetenz Maßnahmen, um die Gefahren durch unkooperative UAS im Umfeld von An- und Abflugbereichen von Flugplätzen zu minimieren, und wenn ja, welche?
- 6. Sieht die Bundesregierung derzeit Probleme bei der zuverlässigen Detektion und Abwehr potenziell gefährlicher UAS, und wenn ja, welche, und wie will die Bundesregierung diese Probleme beheben?

Die Fragen 5 und 6 werden aufgrund ihres Sachzusammenhangs gemeinsam beantwortet.

Das Bundesministerium für Digitales und Verkehr (BMDV) und das Bundesministerium des Innern und für Heimat haben eine gemeinsame Arbeitsgruppe zur Detektion von Drohnen und Abwehr von unkooperativen Drohnen (beginnend mit der Betrachtung der Verkehrsflughäfen) eingerichtet. Ziel der Arbeitsgruppe ist die Entwicklung eines Gesamtkonzeptes unter Einbindung aller betroffenen Akteure. Die Arbeitsgruppe beleuchtet die Aspekte Prävention, Zuständigkeiten, technische Umsetzungsmöglichkeiten und Möglichkeiten der Finanzierung.

- 7. Sieht die Bundesregierung Handlungsbedarf im Rahmen ihrer eigenen Regelungskompetenz, um die Kollisionsvermeidung zwischen bemannten und unbemannten Luftfahrzeugen sicherstellen?
- 8. Sieht die Bundesregierung einen eigenen Handlungsbedarf, um den sicheren Betrieb automatisierter und autonomer UAS außerhalb der Sichtweise des Steuerers, insbesondere in der Kommunikation im Luftraum, sicherzustellen und mit welchen Maßnahmen will sie diese Herausforderungen ggf. angehen?
- 9. Welche sonstigen Maßnahmen ergreift die Bundesregierung ggf., um den Anteil kooperativer unbemannter Luftfahrzeuge zu erhöhen?

Die Fragen 7 bis 9 werden aufgrund ihres Sachzusammenhangs gemeinsam beantwortet.

Der Betrieb von unbemannten Fluggeräten ist umfassend reguliert. Das Risiko von Kollisionen wird insbesondere durch den europäischen Rechtsrahmen und die Bestimmungen des § 21h Absatz 3 Satz 1 Nummer 1 und 2 der Luftverkehrs-Ordnung minimiert.

Zurzeit plant die Bundesregierung die Schaffung eines nationalen Rechtsrahmens für die Einführung von U-Spaces. In U-Spaces werden spezielle Dienste zur Verfügung gestellt, die den Drohnenbetrieb einfacher und sicherer machen. Dazu gehört auch die Gewährleistung der Kollisionsfreiheit. Durch den nationalen U-Space-Rechtsrahmen werden künftig noch mehr Betriebsarten ermöglicht.

10. Wie wird bei der Kennzeichnung von UAS gewährleistet, dass die Kennzeichnung auch noch nach einem möglichen Absturz des Fluggerätes verwechslungsfrei auswertbar ist?

Gemäß EU-Rechtsrahmen muss die vorgeschriebene eindeutige elektronische Identifizierung (eID) sowohl physisch an das unbemannte Fluggerät angebracht werden als auch elektronisch vom Gerät abgestrahlt werden. Dadurch ist eine Verwechslungsgefahr ausgeschlossen und auch im Falle eines Absturzes eine Identifizierung möglich.

11. Ist es nach Auffassung der Bundesregierung zielführend, die Drohnen im Bundesland des Firmen- oder Wohnsitzes zu registrieren und nicht im Gebiet der Flüge, und wenn ja, warum?

Das Register für Betreiber von unbemannten Fluggeräten wird bundesweit einheitlich vom Luftfahrt-Bundesamt verwaltet.

12. Sieht die Bundesregierung aktuell Handlungsbedarf, um im zivilen Bereich die Digitalisierung geografischer UAS- Gebiete dahin gehend zu optimieren, dass die Sichtbarkeit der Verbotsbereiche für die Steuerer z. B. durch optimierte Geo-Sensibilisierung erhöht wird?

Über die Digitale Plattform Unbemannte Luftfahrt (dipul) werden alle sicherheitsrelevanten Daten zur Verfügung gestellt.

13. Sieht die Bundesregierung für UAS besondere Herausforderungen bei Flügen im Gebirge und über See, und trägt nach Auffassung der Bundesregierung die derzeitige Gesetzeslage diesen Anforderungen Rechnung, und wenn jeweils ja, warum?

Der Betriebsort ist vor dem Hintergrund eines risikobasierten Ansatzes zwingend zu berücksichtigen. Die entsprechenden Vorgaben des europäischen Rechtsrahmens, insbesondere das in der speziellen Kategorie angewandte SORA (Specific Operation Risk Assessment) tragen diesem Umstand Rechnung.

14. Welche Kenntnisse hat die Bundesregierung über den Fortschritt bei der Umsetzung der europarechtlichen Rahmenbedingungen für den Einsatz von UAS im internationalen Vergleich und Wettbewerb, zum Beispiel im Vergleich mit Österreich, und wo sieht sie für Deutschland ggf. noch Nachholbedarf?

Nach Auffassung der Bundesregierung ist Europa im internationalen Vergleich sehr gut positioniert. Dazu tragen insbesondere die Umsetzung von SORA über den europäischen Rechtsrahmen und die U-Space-Verordnungen der EU bei.

Nach Auffassung der Bundesregierung ist Deutschland einer der großen Treiber im Bereich der unbemannten Luftfahrt. Die Präsenz wichtiger eVTOL-Hersteller sichert Deutschland einen Spitzenplatz im Bereich der Advanced Air Mobility. Mit der jüngsten Veröffentlichung des nationalen U-Space-Konzepts ist Deutschland einer der Pioniere im Bereich des Unmanned Traffic Management.

15. Wie hoch waren die gesamten Mittelansätze des Bundes für die Forschungs- und Entwicklungsförderung von UAS und Flugtaxis (vgl. "Unbemannte Luftfahrtsysteme und innovative Luftfahrtkonzepte", Aktionsplan der Bundesregierung, https://bmdv.bund.de/SharedDocs/DE/Anlag e/DG/aktionsplan-drohnen.pdf?__blob=publicationFile S. 29 ff.) sowie der für deren Betrieb erforderlichen Infrastruktur in den Jahren 2019, 2020, 2021 und 2022?

Im Bundeshaushalt 2019 wurde der Titel 1204 686 11 "Zuschüsse für innovative Forschung im Rahmen der Digitalen Infrastruktur und Gesellschaft" mit der unverbindlichen Erläuterung ergänzt, dass Ausgaben auch für Forschung und Entwicklung im Bereich UAS und Flugtaxis verwendet werden können. Dafür wurden für das Haushaltjahr 2019 zusätzlich 1 000 T Euro an Haushaltsmittel im Ansatz zur Verfügung gestellt. Mit dem Haushaltsjahr 2020 wurde ein neuer Titel 1204 686 12 "Zuschüsse für innovative Forschung im Bereich unbemannte Luftfahrt (Drohnen) und Lufttaxis" ausgebracht, der in den Folgejahren mit 4 800 T Euro (2020), 7 800 T Euro (2021) und 13 714 T Euro (2022) ausgestattet wurde.

Neben diesem explizit zur FuE-Förderung von UAS und Flugtaxis angelegten Haushaltstitel hat der Bund in verschiedenen weiteren Haushaltstiteln Mittel in

Höhe von 11 570 T Euro (2019), 29 093,4 T Euro (2020), 16 667,5 T Euro (2021) und 17 268,7 T Euro (2022) für die Beforschung von UAS und Lufttaxis bereitgestellt.

16. Welche Mittel für welche Projekte sind seitens des Bundes mit dem Ziel der raschen Marktreifeerlangung von UAS und Flugtaxis in den Jahren 2019, 2020, 2021 und 2022 in Forschungs- und Pilotvorhaben und in die Einrichtung von Testfeldern und Reallabore geflossen (vgl. "Unbemannte Luftfahrtsysteme und innovative Luftfahrtkonzepte", Aktionsplan der Bundesregierung, https://bmdv.bund.de/SharedDocs/DE/Anlage/DG/aktionsplan-drohnen.pdf? blob=publicationFile, S. 31 ff.)?

Die geförderten Vorhaben des Bundes sind der Anlage* zu entnehmen.

17. Wie hoch sind die Mittelansätze des Bundes für die Forschungs- und Entwicklungsförderung von UAS und Flugtaxis sowie die für deren Betrieb erforderliche Infrastruktur im Jahr 2023, und welche Instrumente richten sich hierbei ggf. insbesondere an kleine und mittlere Unternehmen und Start-ups?

Im Haushaltstitel 1204 686 12 "Zuschüsse für innovative Forschung im Bereich unbemannte Luftfahrt (Drohnen) und Lufttaxis" beträgt der Mittelansatz im Haushaltsjahr 2023 5 700 T Euro. In weiteren Haushaltstiteln werden Mittel in Höhe von 32 199 T Euro im Ansatz bereitgestellt.

Als Innovationstreiber sind kleine oder mittlere Unternehmen und Startups in zahlreichen FuE-Maßnahmen im Bereich UAS und Flugtaxis förderberechtigt, so z. B. in den Förderrichtlinien "Innovative Luftmobilität" und "mFUND" des BMDV.

^{*} Von einer Drucklegung der Anlage wird abgesehen. Diese ist auf Bundestagsdrucksache 20/5783 auf der Internetseite des Deutschen Bundestages abrufbar.

Tabelle zu Frage 16

Ressort	Projekt	FKZ	Mittelabfluss 2020	Mittelabfluss 2020	Mittelabfluss 2021	Mittelabfluss 2022
BMDV	U-SpaceR3	19FS2033	- €	- €	- €	38.402,00€
BMDV	FreeRail	19F2088	143.734,00 €	745.729,00 €	589.022,00€	121.714,00€
BMDV	MesSBAR	19F2097	202.563,00 €	687.571,00€	549.334,00€	569.432,00€
BMDV	RiverCloud	19F2121	- €	314.108,00 €	630.376,00€	356.963,00 €
BMDV	FlowPro	19F2128	- €	282.960,00 €	679.584,00 €	610.986,00€
BMDV	OpenDroP	19F2142	- €	- €	60.684,00€	576,00 €
BMDV	ADIS	19FS2005	- €	- €	164.463,00 €	8.163,00 €
BMDV	GRADE	19FS2009	- €	- €	- €	149.442,00 €
BMDV	EULE	19FS2010	- €	- €	- €	476.029,00 €
BMDV	U-SpaceR3	19FS2033	- €	- €	- €	38.402,00 €
BMDV	IDEALS	19F1126	- €	- €	- €	- €
BMDV	DIANE	19F2228	- €	- €	- €	4.304,00 €
BMDV	AuDroK	19F1131	- €	- €	- €	- €
BMDV	InnoPart	19F2086	94.870,00 €	222.165,00 €	228.069,00 €	75.885,00 €
BMDV	fAIRport	19F2131	- €	253.766,00 €	434.495,00€	272.002,00 €
BMDV	mdfBIMplus	19FS2021	- €	- €	- €	617.065,00 €
BMDV	cAIR	19F1129	- €	- €	- €	40.936,00€
BMDV	SafeSky	19FS2044	- €	- €	- €	- €
BMDV	SkyTRACKplus	19FS2049	- €	- €	- €	- €
BMDV	mDRONES4river	19F2054	419.185,00 €	432.869,00 €	358.464,00€	33.128,00 €
BMDV	VISION	19F2074	584.102,00 €	705.445,00 €	894.456,00€	- €
BMDV	softeros	19F1047	63.501,00 €	2.968,00 €	- €	- €
BMDV	AEROMET-UAV	19F2072	200.221,00 €	264.927,00 €	87.656,00€	- €
BMDV	DROVA	19F2041	260.599,00 €	204.559,00 €	- €	- €
BMDV	Inspektion_mit_UA	19F1021	16.416,00 €	3.569,00 €	- €	- €
BMDV	AMICA	45ILM1001A/B	- €	- €	- €	19.467,67 €
BMDV	AMI-FlyingIN2Air	45ILM1002A/B/E/F/G	- €	- €	- €	242.890,63 €
BMDV	AuRa	45ILM1003A/B	- €	- €	- €	67.387,93 €
BMDV	CATS	45ILM1004A	- €	- €	- €	71.870,13 €
BMDV	DaNoNav	45ILM1006A/B	- €	- €	- €	- €

BMDV	DroLEx	45ILM1008A/B	- €	- €	- €	86.884,76€
BMDV	GrenzFlugPlus	45ILM1011A/C/D/E/	- €	- €	- €	1.022.405,44
						€
BMDV	LabFly	45ILM1012A/B/C	- €	- €	- €	- €
BMDV	LiquiDrone	45ILM1013A/B/C/D	- €	- €	- €	362.564,91 €
BMDV	LÚV	45ILM1014A/B/C/D/	- €	- €	- €	558.848,33 €
BMDV	REGUAS	45ILM1015A/D/E	- €	- €	- €	- €
BMDV	RescueFly	45ILM1016A/B/C/D/	- €	- €	- €	899.066,01 €
BMDV	SmartDroneWatch	45ILM1017A/B/C	- €	- €	- €	- €
BMDV	UnLuBW	45ILM1018A/B/D	- €	- €	- €	385.465,97 €
BMDV	IR4MRM	45UAS1001A	53.197,06 €	- €	- €	- €
BMDV	ProtAct	45UAS1002A	38.590,81 €	- €	- €	- €
BMDV	GrenzFlug	45UAS1004A/B	83.307,59€	- €	- €	- €
BMDV	OPTIMO-UAS	45UAS1006	80.072,43€	- €	- €	- €
BMDV	UAS_INVENT	45UAS1007A/B/C	- €	751.265,39 €	610.300,15€	368.052,14 €
BMDV	AuDeRi	45UAS1008	90.336,00€	- €	- €	- €
BMDV	UDVeo	45UAS1008A/B/C/F	- €	881.622,56 €	1.177.374,94	711.809,94 €
					€	
BMDV	EDMO-TUEF-	45UAS1009A/B	94.868,36 €	- €	- €	- €
BMDV	Air-Connect NF	45UAS1013A	105.460,60€	- €	- €	- €
BMDV	voloCHRIS	45UAS1016A/B	261.668,94 €	- €	- €	- €
BMDV	FCNavSkate	45UAS1017A/B/D	208.879,96 €	- €	- €	- €
BMDV	SPRIT	45UAS1019A/B	266.523,30€	- €	- €	- €
BMDV	KODRONA	45UAS1020A/B/C/D	316.652,29€	- €	- €	- €
BMDV	Medifly-Hamburg	45UAS1022A/B/C/D	230.973,03€	- €	- €	- €
BMDV	ProDeGa	45UAS1031A/B	106.660,67€	- €	- €	- €
BMDV	INCityTakeOff	45UAS1039A/B/C/D	- €	645.937,35€	442.223,01€	246.404,14 €
BMDV	SkyCab Part 2	45UAS1040A/B/C/D	- €	701.766,92€	927.986,69€	737.576,71 €
BMDV	Medifly_2	45UAS1042A/B/C/D	- €	127.611,63€	350.413,82€	187.533,19€
BMDV	SIMULU	45UAS1044A/B/C/D	- €	193.382,28 €	776.484,96 €	663.117,89 €
BMDV	MEDinTime	45UAS1043A/C/D/E	- €	66.704,46 €	542.950,82€	351.968,43 €
BMDV	SUCOM	45UAS1046A/C/D/E	- €	259.131,47 €	706.018,23€	353.935,04 €
BMDV	AOD_neu	45UAS1047A	- €	- €	1.073.028,41	462.645,53 €
					€	

	Lärmauswirkungen					
	des Einsatzes von					
BMUV/UBA	Drohnen auf die	3720 54 102 1		45.500,00€	92.249,64 €	
	Chancen und			,	,	
BMUV/UBA	Risiken der	3721 58 101 0			20.000,00€	75.000,00€
	Untersuchungen					
	zur Koexistenz					
	eines					
	Rundumsichtradars					
	mit gemeinsam im					
BMWK	UAV integrierten	20D1905B	€	24.950,00€	69.529,83 €	79.075,37 €
	Mehrtorantennen					
5.0.00	zur Funkpeilung	00040000		40 - 0 6		05 440 44 6
BMWK	kooperativer UAVs	20D1905C	€	5.549,59 €	67.966,97 €	65.146,44 €
	Anforderungen für					
	DAA und ATOL bei					
	UAS und HC zur					
DAMAGE	nahtlosen	20040055	€	0.400.07.6	7 204 00 6	10 161 10 6
BMWK	Integration in den Transponderbasiert	20D1905E	₹	2.183,97 €	7.304,99 €	10.461,18€
	er Interrogator als					
	Teil eines					
	kooperativen					
BMWK	Systems für den	20D1905J	€	25.386,75€	114.653,24 €	139.193,27 €
	MIMO-			,	,	,
	Radarbasiertes					
	Multisensorsystem					
	zur Automation von					
	Helikoptern und zur					
	sicheren Integration		_			
BMWK	von	20D1905L	€	100.000,00€	568.000,00€	300.000,00 €
	Entwicklung eines					
	Flugbahnplanungs					
BMWK	algorithmus und der	20D2106C	- €	- €	- €	198.365,95 €

	notwendigen					
	Bahnregelung zur					
	energieeffizienten					
	Nutzung eines					
	unbemannten					
	Luftfahrtsystemnet					
	Technologieentwic					
	klung und					
	Konfigurationsentw					
	urf für ein					
	hochautomatisierte					
	s Lufttaxi mit					
	500km Reichweite					
	inklusive einer					
BMWK	umfassenden	20E1713	219.996,31 €	227.180,78 €	93.656,51 €	- €
	Reichweitenoptimie					
	rung von					
	UAS/RPAS durch					
BMWK	automatischen	20E1910B	- €	- €	52.500,00€	64.945,95€
	Urbane					
	Lufttransportsimula					
	tion:					
	Simulationsbasierte					
	Entwicklung von					
	Infrastruktur- und					
	Betriebskonzepten					
	zur Bewertung der					
	Chancen und					
DIMANA	Risiken des	2054044	6	_	225 700 00 6	074 207 00 6
BMWK	Aufbaus Urbaner	20E1911	- €	- €	225.700,00 €	271.307,08 €
	Entwicklung ökoeffizienter					
DIVIVALE	Nahfeld-	20E2424B		<i>E</i>	<u></u>	26 495 04 6
BMWK	ivanieiu-	20E2124B	-	€	- €	26.485,04 €

	Inspektionsverfahre					
	n für					
	Entwicklung					
	integerer					
	Navigationsalgorith					
D100444	men für UAM durch	00504044				0 000 00 6
BMWK	Einbeziehung eines	20F2101A	-	€	- €	9.209,02 €
	Neuartige					
	Navigationslösung	00504045		6	C	C
BMWK	für urbane UAM-	20F2101B	-	€	- €	- €
	Kabinenlösungen sowie nachhaltige					
	Fertigungsverfahre					
BMWK	n,	20K2105A	_	€	- €	41.961,10€
Bivivit	Lichtkonzepte &	2011210071			,	11.001,10 €
	Notstromversorgun					
BMWK	g für UAM Kabinen	20K2105C	-	€	- €	- €
	Erforschung von					
	Schlüsseltechnolog					
	ien für das				1.257.709,02	1.460.887,10
BMWK	elektrohybride	20M1908C	-	€	€	€
	Erforschung von					
	Geometrien,					
	Werkstoffen und					
	des					
	Produktionsprozes					
	ses für					
	lärmoptimierte					
5.0407	Mantelpropeller für	00144000				
BMWK	das hybrid-	20M1908D	-	€	68.093,06 €	75.623,08 €
	Optimierung,					
	Prüfkonzept und	20144222		_	00 =00 0 : 5	0= 0.4= == 0
BMWK	Validierung eines	20M1908F	- €	- €	83.739,24 €	37.845,76 €

	I :	T	1	T		
	innovativen					
	Leichtbaudesigns					
	für die					
	Flügelstruktur des					
	neuartigen					
	Systemintegration					
	und Validierung					
	einer					
	hochperformanten					
	Rechnerplattform					
	für das					
	Flugregelungs- und					
BMWK	Flugsteuerungssyst	20M2103A	- €	- €	- €	301.701,82 €
	Komfortverbesseru					
	ngen im					
	niederfrequenten					
	Schwingungsbereic					
BMWK	h für Urban Air	20M2103B	- €	- €	- €	60.914,04 €
	Fehlertoleranter					
	elektromechanisch					
	er Aktuator für					
BMWK	zukünftige UAV	20Q1731A	63.516,05 €	141.224,08 €	150.989,87 €	- €
	Innovative					
	fehlertolerante					
	Regelungsverfahre					
	n für zukünftige					
BMWK	elektromechanisch	20Q1731B	85.380,33 €	100.000,00€	109.119,67 €	- €
	Fehlertoleranter					
	Elektromechanisch					
	er Aktuator für					
BMWK	zukünftige UAV	20Q1731C	79.970,29€	78.141,01 €	18.819,97 €	- €
	Systemidentifikatio					
BMWK	n für Transitions	20Q1936A	€	6.262,26 €	,	131.751,55 €
BMWK	Toolchain zur	20Q1936B	€	14.000,00 €	84.190,00€	76.000,00€

		I	1				
	Optimierung für						
	Transitions UAV						
	Entwicklung von						
	Funknetzen zur						
5.0.446	Vernetzung von	00040004				10 = 10 0 1 0	444 404 00 6
BMWK	UAVs und	20Q1939A	€	-	€	48.516,91 €	111.124,28 €
	Verteilte						
	Positionskontrolle						
	in redundanten						
	UAV-Funknetzen						
	zur Erhöhung der						
	Leistungsfähigkeit,						
BMWK	Effizienz, sowie der	20Q1939E	€	-	€	29.910,00 €	99.999,65 €
	Verteilte						
	Positionskontrolle						
	in redundanten						
	UAV-Funknetzen						
D. 10 A (1) C	zur Erhöhung der	00040005				4 0 4 0 0 4 6	00 440 40 6
BMWK	Flugsicherheit und	20Q1939F	€	-	€	4.049,61 €	29.446,19 €
	Verkehrsszenarien						
	und						
	Flugbewegungsmo						
DAMAGE	delle für die	000400011				40.750.00.6	00 444 70 6
BMWK	gegenseitige	20Q1939H	€	-	€	19.753,20 €	83.144,76 €
	Automatisches und Landebahnunabhä						
	ngiges Start- und						
	Landesystem für						
	einen						
BMWK	solarelektrischen	20Q1958A	€	_	€	192.310,88 €	150.696,86 €
DIVIVIX	Erforschung und	200,1000/1		1		102.010,00 €	100.000,00 C
	Entwicklung der						
	systemtechnischen						
BMWK	Komponenten des	20Q1958B	_	€		133.600,00 €	185.776,26 €
אאואום	1 Northportoritori des	20013000	_	~		155.000,00 €	100.110,20 €

	Bodensystems für					
	einen					
	automatischen					
	Flugbetrieb					
	Entwicklung,					
	Konstruktion und					
	Fertigung eines					
	mechanischen					
	Bodenfahrwerksyst					
510111	ems für	00040500			45 405 50 6	00 =00 00 6
BMWK	automatische	20Q1958C	-	€	15.497,59 €	92.522,08 €
	Technologiebewert					
	ung,					
	Zertifizierungsvoru					
	ntersuchung und					
	Sicherheitsanalyse sowie technische					
	Entwicklungskoordi					
	nation und					
	Nutzerzentriertes					
	Anforderungsmana					
	gement des					
	Bodenund					
	Landesystems für					
BMWK	einen	20Q1958D	-	€	81.789,33 €	72.097,41 €
	Entwicklung des					
	Sensorsystems zur					
	relativen					
	Positionsbestimmu					
	ng und Verifikation					
	der					
	Komponentenfunkti					
	onen des					
BMWK	schienenbasierten	20Q1958E	- €	- €	84.042,54 €	97.493,34 €

	Entwicklung und Validierung des flugzeugseitigen Steuerungskonzept s für das geplante Start- und					
	Landemanöver für					
	einen					
BMWK	automatischen	20Q1958F	- €	15.282,97 €	117.821,43 €	123.836,08 €
	Kompakten					
	Sense&Avoid					
	Radarsystems für					
	mittelgroße UAVs.					
	Der Radarsensor					
	ist die kooperative					
	Komponente des Detect&Avoid					
	MasterUAS					
	Gesamtsystems					
BMWK	zur sicheren	20V1703B	197.521,19€	145.577,86 €	131.250,00 €	- €
	Chipentwurf für		,	,	,	
	Sense&Avoid					
	Radar zur sicheren					
BMWK	Integration von	20V1703D	231.300,00 €	275.000,00 €	83.800,00€	- €
	Multi-					
	ModeTransceiver					
BMWK	als kooperatives Funksystem für	20V1703F	187.023,07 €	281.787,51 €	25.684,42 €	30.000,00€
DIVIVVIX	Untersuchungen	20 1 1 1 0 0 1	107.023,07 €	201.707,31 €	20.004,42 €	30.000,00 €
	zur Integration von					
BMWK	UAV in den	20V1703H	107.086,83 €	135.556,34 €	53.913,17 €	1.699,59 €
	Air Taxis: Fluglärm			,	•	,
BMWK	Betrachtung	20V1903B	- €	- €	91.780,87 €	61.200,00€
BMWK	Air Taxis:	20V1903C	- €	- €	71.272,91 €	70.677,09€

	Akustische						
	Modellierung von						
BMWK	Bodeninfrastruktur für Lufttaxi-	20V1904A	- €	,	- €	- €	152 100 72 <i>6</i>
DIVIVV	System zur	20V 1904A	- +		- €	- €	153.100,73 €
	Gewährleistung						
	sicheren Betriebs						
	elektrischer teiloder						
	vollautonomer						
	Luftfahrzeuge in						
	urbaner Umgebung						
	von Landeplätzen	20\/4004B		,	6	124 722 44 6	045 476 06 6
BMWK	durch integre Betriebskonzepte	20V1904B	- €	:	- €	134.732,41 €	215.176,96 €
	für eine sichere,						
	automatische,						
	interoperable und						
	kooperative						
	Führung bei						
DAMAGE	Startund Landung	001/40040				5 4 4 7 00 6	7 000 50 6
BMWK	von Technik und	20V1904C	- €	:	- €	5.117,03 €	7.023,56 €
	Infrastruktur zum						
	schnellen Einsatz						
	fernlenkbarer UAV						
	zur Messung von						
	Radioaktivität und						
BMWK	Vulkanasche in der	20V1906A	_	€		- €	77.151,90 €
	Entwicklung und						
	die operationelle						
	Evaluierung von						
	insitu						
	Messtrajektorien						
BMWK	zur effizienten	20V1906B	-	€		15.308,73€	69.257,85€

	Messung von					
	Radioaktivität und					
	Vulkanasche					
	mittels UAV und					
	Entwicklung und					
	Erprobung eines					
	modularen					
	Messsystems zur					
	insitu Messung von					
	Vulkanasche und					
	Radioaktivität für					
	die					
	Aufrechterhaltung					
BMWK	der Sicherheit in	20V1906C	-	€	31.036,85€	99.489,17 €
	Entwicklung einer					
	modularen,					
	flexiblen					
	Steuerungsplattfor					
	m des					
	Gesamtsystems					
	A/C & Boden für		_	_		
BMWK	den Einsatz in allen	20V1909A	- €	- €	349.910,35 €	620.995,85€
	Entwicklung von					
	Prozesstechnologie					
	n für die					
	Hochratenfertigung					
DAMAGIC	von Baugruppen	001414040D			40.040.40.6	70 000 00 6
BMWK	aus	20W1912B	- €	- €	19.319,16 €	78.363,20 €
	Entwicklung der					
	digitalen					
5.0.406	Montageverfolgung	000447040	400 070 05 6	440.00=0.4	000 004 05 5	
BMWK	einer Baugruppe in	20X1724G	109.972,99 €	140.027,01 €	236.801,92€	55.248,08 €

	der Vormontage					
	von					
	Hochauftriebssyste					
	men durch					
	Digitalisierung					
	mittels eines					
	multimodalen					
	Sensornetzwerkes					
	und Einspeisung					
	der Daten in ein					
	Modellbasierte					
	Entwicklung einer					
	sicheren digitalen					
	Infrastruktur für					
	servicegetriebene					
BMWK	UAV-Systeme	20X1736E	14.577,40 €	68.807,27 €	71.993,30 €	78.742,58 €
	Entwicklung einer					
	hybriden					
	CloudArchitektur für					
	Echtzeit-Analytik für					
BMWK	UAS & UAM	20X1736F	49.553,83 €	116.323,25€	142.680,07 €	58.901,55€
	Entwicklung und					
	Validierung einer					
	hersteller- und					
	betreiberunabhängi					
	gen Datenplattform					
	als Grundlage für					
	MRO-Services für					
BMWK	Drohnen und	20X1903A	- €	- €	88.880,77€	- €

